Product Description

1.Convenient to adjust
2.Wide range of ratio
3.Easy to install
4.high torque
Application Industries:
Our SWL series screw jacks are widely used in the industries such as metallurgy,mining,hoisting and transportation, electrical
power,energy source,constrction and building material,light industry and traffice industry

Screw Jacks in construction

Often found in climbing mechanism of construction,the screw jacks use physical means to raise and lower loads, which typically range from 5 tons to 30 tons. A screw jack is a common type of mechanical jack, which works via a motor and gearbox by an operator. A screw uses the shape of its threads to raise or lower the load, or a traveling nut does the lifting while the screw turns in place. Mechanical jacks are self-locking(not for ball screw), which means that when power is removed from the jack, the screw stays in place until power resumes. This setup makes mechanical jacks safer than their hydraulic counterparts, because users don’t have to fear a loss of power. The main components of screw jacks are; trapezoidal lifting screw also known as lead screw, worm screw, worm gear and gear housing. A worm screw is rotated manually or by a motor. With the rotation of the worm gear, the lead screw in it moves upwards or downwards linearly. The feed rate of the screw depends on the turning speed, the number of teeth of the gears and the size of the screw pitch. In some models of jackscrews, The lifting screw does not move up and down. It only rotates around its axis. A lifting nut (also known as a travelling nut) moves along the lead screw. The lifting nut of the screw jack is made of bronze to decrease friction.

Product Parameters

MODEL

 

SWL2.5

SWL5

SWL10

SWL15

SWL20

SWL25

SWL35

Maximum lifting force (kN)

 

25

50

100

150

200

250

350

Screw thread size

 

Tr30*6

Tr40*7

Tr58*12

Tr58*12

Tr65*12

Tr90*16

Tr100*20

Maximum tension (kN)

 

25

50

99

166

250

350

Worm gear ratio (mm)

P

1/6

1/8

3/23

1/8

3/32

3/32

 

M

1/24

1/24

1/24

1/24

1/32

1/32

Worm non rotating stroke (mm)

P

1.0

0.875

1.565

1.56

1.5

1.875

M

0.250

0.292

0.5

0.5

0.5

0.625

Maximum elongation of screw rod under tensile load (mm)

 

1500

2000

2500

3000

3500

4000

Maximum lifting height at maximum pressure load (mm)

The head of the screw rod is not guided

250

385

500

400

490

850

820

Lead screw head guide

400

770

1000

800

980

1700

1640

Worm torque at full load(N.m)

P

18

39.5

119

179

240

366

464

M

8.86

19.8

60

90

122

217

253

efficiency(%)

P

22

23

20.5

 

19.5

16

18

M

11

11.5

13

 

12.8

9

11

Weight without stroke(kg)

 

7.3

16.2

25

 

36

70.5

87

Weight of screw rod per 100mm(kg)

 

0.45

0.82

1.67

 

2.15

4.15

5.20

Detailed Photos

 

 

 

SWL Series worm screw Jack:

1.The elevator is a combination of turbine pair and trapezoid screw rod to complete the lifting and lowering of objects. 2.Compact structure, light weight, safety and reliability, long service life, convenient installation

3.Self-locking function in the static state.

 

1. screw rod

2. nut bolt

3. cover

4.Skeleton oil seal

5.Bearing

6.Worm gear

7.Oil filling hole

8.Case

9.Skeleton oil seal

10.Cover

11. nut bolt

12.Bearing

13.Skeleton oil seal

14.Bearing

15.worm

16.Flat key

17.Bearing

18.Skeleton oil seal

19.Cover

20.Nut bolt

Product Description

 

Related Products

 

Packaging & Shipping

 

Company Profile

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Nonstandard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Power Transmission
Customized Support: OEM, ODM, Obm
Brand Name: Beiji or Customized
Certificate: ISO9001:2008
Structures: Worm Gear and Worm
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

worm gear

What is the lifespan of a typical worm gear?

The lifespan of a typical worm gear can vary depending on several factors, including the quality of materials, design, operating conditions, maintenance practices, and the specific application. Here’s a detailed explanation of the factors that influence the lifespan of a worm gear:

1. Quality of materials: The choice of materials used in the construction of the worm gear greatly impacts its lifespan. High-quality materials, such as hardened steel or bronze, offer better durability, wear resistance, and overall longevity compared to lower-quality materials. The selection of appropriate materials based on the application requirements is crucial for achieving a longer lifespan.

2. Design considerations: The design of the worm gear, including factors such as tooth profile, size, and load distribution, can influence its lifespan. Well-designed worm gears with optimized tooth geometry and proper load-carrying capacity tend to have longer lifespans. Additionally, features like lubrication systems and anti-backlash mechanisms can also contribute to improved durability and extended lifespan.

3. Operating conditions: The operating conditions under which the worm gear operates play a significant role in determining its lifespan. Factors such as load magnitude, speed, temperature, and environmental conditions can affect the wear and fatigue characteristics of the gear. Properly matching the worm gear to the application requirements and ensuring that it operates within specified limits can help prolong its lifespan.

4. Maintenance practices: Regular maintenance and proper lubrication are essential for maximizing the lifespan of a worm gear. Adequate lubrication helps reduce friction, wear, and heat generation, thereby extending the gear’s life. Regular inspections, lubricant replenishment, and timely replacement of worn or damaged components are important maintenance practices that can positively impact the lifespan of the worm gear.

5. Application-specific factors: The specific application in which the worm gear is used can also influence its lifespan. Factors such as operating cycles, torque levels, shock loads, and duty cycles vary between applications and can impact the wear and fatigue experienced by the gear. Understanding the unique requirements and demands of the application and selecting a worm gear that is appropriately rated and designed for those conditions can contribute to a longer lifespan.

Given the variations in materials, designs, operating conditions, and maintenance practices, it is challenging to provide a specific lifespan for a typical worm gear. However, with proper selection, installation, and maintenance, worm gears can have a lifespan ranging from several years to decades, depending on the factors mentioned above.

It is worth noting that monitoring the performance of the worm gear through regular inspections and addressing any signs of wear, damage, or excessive backlash can help identify potential issues early and extend the gear’s lifespan. Additionally, following the manufacturer’s guidelines and recommendations regarding maintenance intervals, lubrication types, and operating limits can significantly contribute to maximizing the lifespan of a worm gear.

worm gear

Can worm gears be used in both horizontal and vertical orientations?

Yes, worm gears can be used in both horizontal and vertical orientations. Here’s a detailed explanation of the suitability of worm gears for different orientations:

1. Horizontal Orientation: Worm gears are commonly used in horizontal orientations and are well-suited for such applications. In a horizontal configuration, the worm gear’s weight is primarily supported by the bearings and housing. The lubrication and load-carrying capabilities of the gear design are optimized for horizontal operation, allowing for efficient power transmission and torque generation. Horizontal worm gear applications include conveyor systems, mixers, mills, and many other industrial machinery setups.

2. Vertical Orientation: Worm gears can also be used in vertical orientations, although there are some additional considerations to address in such cases. In a vertical configuration, the weight of the worm gear exerts an axial force on the worm shaft, which can introduce additional load and affect the gear’s performance. To ensure proper operation in a vertical orientation, the following factors should be considered:

  • Thrust load handling: Vertical orientations impose a thrust load on the worm gear due to the weight of the gear and any additional external loads. The gear design should be capable of handling and transmitting this thrust load without excessive wear or deformation. Proper bearing selection and lubrication are crucial to support the axial load and maintain optimal performance.
  • Lubrication: Lubrication becomes even more critical in vertical worm gear applications. Adequate lubrication ensures proper lubricant film formation to minimize friction, reduce wear, and dissipate heat generated during operation. Careful consideration should be given to the lubricant type, viscosity, and lubrication method to ensure effective lubrication, particularly in the upper parts of the gear where lubricant distribution may be more challenging.
  • Backlash control: In vertical orientations, gravity can cause the load to act on the gear in the opposite direction, potentially leading to increased backlash. Proper gear design, including tooth geometry and clearance adjustments, can help minimize backlash and ensure precise motion control and positional stability.
  • Bearing selection: The choice of bearings becomes crucial in vertical worm gear applications. Thrust bearings or combinations of thrust and radial bearings may be required to handle the axial and radial loads effectively. Bearings with appropriate load-carrying capacities and stiffness are selected to ensure smooth operation and minimize deflection under vertical loads.
  • Sealing: Vertical orientations may require additional sealing measures to prevent lubricant leakage and ingress of contaminants. Proper sealing and protection mechanisms, such as seals or gaskets, should be implemented to maintain the integrity of the gear system and ensure reliable operation.

In summary, worm gears can be utilized in both horizontal and vertical orientations. However, certain considerations related to thrust load handling, lubrication, backlash control, bearing selection, and sealing should be taken into account for vertical applications. By addressing these factors appropriately, worm gears can effectively transmit power and torque, whether in horizontal or vertical configurations.

worm gear

How do you choose the right size worm gear for your application?

Choosing the right size worm gear for your application involves considering several factors to ensure optimal performance and longevity. Here are the key considerations:

Load Requirements:

Determine the maximum load that the worm gear will need to transmit. This includes both the torque (rotational force) and the axial load (force along the axis of the gear). Calculate or estimate the peak and continuous loads that the gear will experience during operation. Consider factors such as shock loads, dynamic forces, and variations in load conditions. This information will help determine the required load-carrying capacity of the worm gear.

Gear Ratio:

Determine the desired gear ratio for your application. The gear ratio determines the speed reduction and torque multiplication provided by the worm gear system. Consider the specific requirements of your application, such as the desired output speed and the torque needed to drive the load. Select a worm gear with a gear ratio that meets your application’s requirements while considering the limitations of the available gear options.

Efficiency:

Consider the efficiency requirements of your application. Worm gears typically have lower efficiency compared to other types of gears due to the sliding action between the worm and worm wheel. If efficiency is critical for your application, choose a worm gear design and materials that offer higher efficiency, such as a double enveloping worm gear.

Space Constraints:

Evaluate the available space for the worm gear assembly in your application. Consider the dimensions of the worm gear, including the diameter, length, and mounting requirements. Ensure that the chosen worm gear can fit within the available space without compromising other components or functionality.

Speed and Operating Conditions:

Consider the operating speed and environmental conditions in which the worm gear will operate. Some worm gears have speed limitations due to factors such as heat generation and lubrication requirements. Ensure that the selected worm gear is suitable for the anticipated speed range and can withstand the temperature, humidity, and other environmental factors of your application.

Manufacturing Standards and Quality:

Select a worm gear that conforms to recognized manufacturing standards and quality requirements. Look for worm gears from reputable manufacturers that offer reliable and durable products. Consider factors such as material quality, surface finish, and precision in the gear manufacturing process.

By carefully evaluating these factors and considering the specific requirements of your application, you can choose the right size worm gear that meets your performance, load, and space requirements, resulting in a reliable and efficient gear system.

China high quality Worm Screw Jack Lift Gearbox Worm Gear Screw Jack Lifter Mechanical Jack with Best SalesChina high quality Worm Screw Jack Lift Gearbox Worm Gear Screw Jack Lifter Mechanical Jack with Best Sales
editor by CX 2024-03-30